Have you seen my nitrogen?

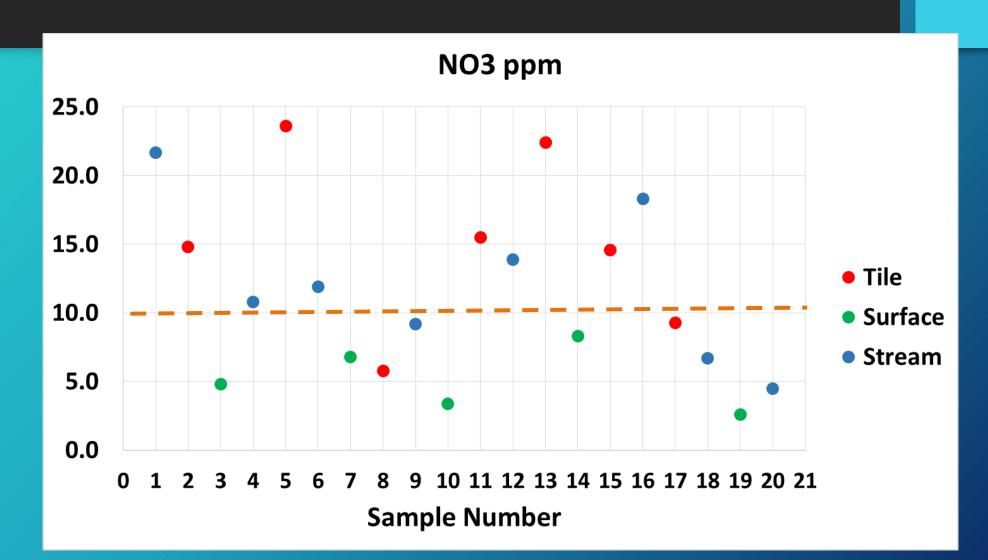
Caroline Wade, Nutrient Watershed Manager Illinois Corn Growers Association

But I haven't lost any, right?

My neighbor maybe.....

"We can't change what we aren't measuring"

Measures ambient concentration of Nitrate and Ammonium


Sponsored by:

We can't change what we aren't measuring

AY-318-W

Interpreting the numbers

Agronomy -Guide

SOILS (TILLAGE)

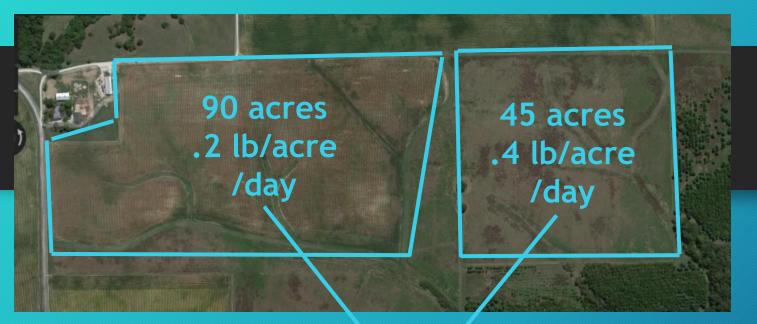
Interpreting Nitrate Concentration in Tile Drainage Water

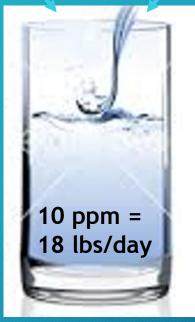
Sylvie Brouder, Brenda Hofmann, Eileen Kladivko, Ron Turco, Andrea Bongen, Purdue University Department of Agronomy; Jane Frankenberger, Purdue University Department of Agricultural and Biological Engineering

NO ₃ -N Concentration (ppm)	Interpretation			
≤ 5	Native grassland, CRP land, alfalfa, managed pastures			
5 – 10	Row crop production on a mineral soil without N fertilizer			
	Row crop production with N applied at 45 lbs./acre below the economically optimum N rate†			
	Row crop production with successful winter crop to "trap" N			
10 - 20	Row crop production with N applied at optimum N rate			
	Soybeans			
≥ 20	Row crop production where:			
	N applied exceeds crop need			
	N applied not synchronized with crop need			
	Environmental conditions limit crop production and N fertilizer use efficiency			
	Environmental conditions favor greater than normal mineralization of soil organic matter			

How does that compare to other areas?

	Non-agricultural water monitoring											
Date	Golf course West		Golf course East		Hidden Creek North Hidden Creek South			Golf course creek		Urban site		
Dale	NO3	NH4	NO3	NH4	NO3	NH4	NO3	NH4	NO3	NH4	NO3	NH4
4/24/2014	1.22		1.05		3.85		3.74		1.88		2.91	
4/28/2014	1.21		0.71		2.70		1.08		1.04		1.27	
5/1/2014	0.71	0.21	0.95	0.32	2.92	0.21	3.29	0.17	2.69	0.26	2.38	0.30
5/7/2014	0.69	0.33	0.85	0.46	2.77	0.33	2.68	0.40	2.46	0.34	2.40	0.49
5/12/2014	0.81	0.56	0.57	0.29	1.91	0.54	1.56	0.77	2.61	0.36	1.51	0.78
5/20/2014	0.39	0.50	0.47	0.72	3.22	0.59	2.87	0.66	1.20	1.62	2.36	0.89


Have you seen my nitrogen?


What does concentration really mean? How can this be useful for farmers? How much nitrogen is being lost? $\underline{\text{concentration } x \text{ flow} = \text{load}}$

10ppm = 0.000083454 lb/gallon

If you're filling up a 5 gallon bucket every 2 seconds, that's 18lbs lost every day!

When we talk in terms of reducing nitrogen lost per acre, we may find some common ground for improvement

Concentration times flow (load) divided by <u>area</u> = pounds of N per acre being lost

Over 6 weeks of flow, that's 756 lbs

Concentration times flow (load) divided by <u>area</u> = pounds of N per acre being lost

What can be done to reduce losses?

Crop Rotation	N Rate	N Time	Nitrate-N	_
			4-Yr Avg.	4-Yr
			Conc.	Total
	lb/A		ppm	lb/A
C-S- <u>Corn</u>	0		6.1	(37.7)
	60+40	SPL	7.8	44.8
	120	PP	8.2	52.1
S-C- <u>Corn</u>	0		4.6	34.0
	60+80	SPL	7.9	64.2
	160	PP	8.8	62.8
C-C- <u>Soybeans</u>	0		5.5	30.5
	0		8.4	40.9
	0		8.7	38.3

SPL - Split Applied, PP - Pre-Plant Application

Table 1. Four year nitrate-N loss from a corn-cornsoybean cropping system at Waseca from 2007 – 2010. Nitrate losses calculated for the crop underlined in the Crop Rotation column. (Randall and Vetsch, 2011)

Nitrates in Drainage Water in Minnesota

Brad Carlson, Extension Educator, University of Minnesota Extension

Jeff Vetsch, Assistant Scientist, University of Minnesota SROC

Gyles Randall, Soil Scientist and Professor Emeritus, University of Minnesota SROC

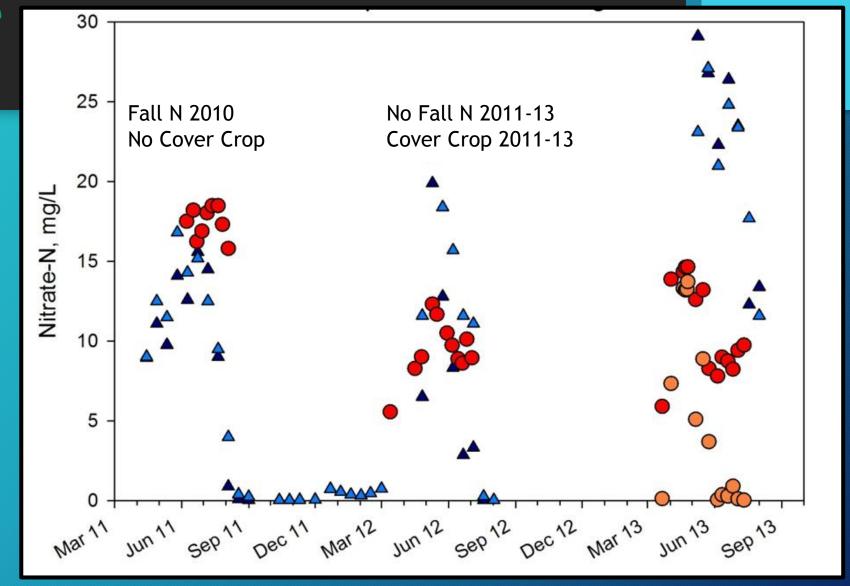
On average, about 20 lb nitrate-N/acre were lost through drainage systems annually when the soil is kept bare. This represents the soil's contribution from soil organic matter.

Corn grown with no N fertilizer inputs still lost an average of about 10lb Nitrate-N/acre/year.

Changing rate and timing can reduce the residual nitrate-N in the soil profile that is subject to leaching.

What can be done to reduce losses?

Cropping System	Total Discharge	Nitrate-N	
	4-Yr. Cumulative	4-Yr Avg.	4-Yr
		Conc.	. Total
	Inches	ppm	lb/A
Continuous corn	30.4	28	194
Corn - soybean	35.5	23	182
Soybean - corn	35.4	22	180
Alfalfa	16.4	1.6	6
CRP	25.2	0.7	4


Table 2. Effect of cropping system on cumulative drainage volume, nitrate-N concentration and N loss in subsurface tile drainage during a 4 – year period (1990 – 1993) at Lamberton. (Randall, et. al., 1997)

Perennial vegetation drastically reduces nitrate-N losses. Cover crops can provide partial year vegetative cover and some reductions in losses.

What can be done to reduce losses?

Bioreactor

Nutrient Loss Reductions

Voluntary implementation

- = you decide what, where and how
 - University recommended Nitrogen rates
 - Nitrification Inhibitors
 - Split application of nitrogen
 - Cover Crops
 - Conservation tillage
 - Bioreactors
 - Wetlands
 - Buffers

You are here!

Questions?

Caroline Wade
Nutrient Watershed Manager
Illinois Corn
14129 Carole Drive
Bloomington, IL 61705

cwade@ilcorn.org

mobile: 309-231-7440

